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ABSTRACT

Empirical studies have shown that large-scale pre-trained language models such as BERT (Bidirec-
tional Encoder Representations from Transformers) bring significant improvements. However, they
are often computationally expensive in many practical scenarios, as such heavy models are not easily
implemented with limited resources. Improving the efficiency of the model while maintaining its
performance is then a key challenge. In this paper, I provide two "sustainable" solutions for Course5’s
text classification task. "Sustainable" is defined here as (1) easy to plug into any PLM (2) lower
computational complexity demands (3) better performance with unlabeled data (4) efficiently uses
cross-layer features.

1 Introduction

Text classification is a common problem in natural language processing, and its task is to assign a pre-defined category
to a given text sequence. The key step in solving it is to learn the text representation. Mainly, there are two solutions: to
use a pre-trained model or not. Previous work without pre-trained models uses various neural networks to learn textual
representations, such as convolutional neural networks [9, 39, 1, 8, 25], recurrent models [13, 37, 24], and attention
mechanism [35, 12].

Alternatively, extensive work has shown that it is beneficial to pre-train models on a large corpus and then utilize them
to further improve downstream NLP tasks, without having to train a new model from scratch. One of the earliest
pre-training models is word embedding, such as word2vec[18] and GloVe [19]. They are context-independent, so
contextual word embeddings have subsequently been proposed, such as CoVe [15] and ELMo [3], which provide
embeddings that capture the context of a word - its position in the sentence. More recently, pre-trained language models
(PLM) have been shown to be useful for learning common language representations by exploiting large amounts of
unlabeled data: e.g., OpenAI GPT [20], BERT [2], XLNet [36], etc.

Despite improvements in accuracy, these models are computationally expensive and inefficient in terms of memory
consumption and latency. This shortcoming hinders their use in scenarios where speed of inference and computational
cost are critical. With limited resources, it is not feasible to put them into operation. Many attempts have been made to
accelerate deep model inference and reduce model size while maintaining accuracy, including quantization [5, 33, 38],
weight pruning [17, 29, 4], and knowledge distillation (KD) [6, 21]. As one of the most popular methods, KD aims to
reproduce the behavior of the teacher network by transferring the knowledge embedded in the larger teacher network to
the smaller student network, e.g., TinyBERT [7], DistillBERT [22], PKD-BERT [26], MobileBERT [27], MKD [14], to
name a few. However, it is not flexible enough to put into service for a variety of requests.

In addition, empirical study [30] found that many NLP datasets would appear to have different levels of difficulty for
input samples. Heavy models (redundancy) may over-calculate simple inputs, while lightweight models tend to fail in
complex samples. Based on this appeal, it is useful to design a "sustainable" model that can accommodate samples of
varying complexity and gain computational efficiency with minimal loss of accuracy.
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Inspired by the widely used model training strategy - Early Stopping, "sustainable" mechanisms are proposed for PLMs
that adjust the number of executed layers dynamically to reduce computational steps. It enables better input adaptive
inference of PLM to resolve the aforementioned limitations. Specifically, this model couples an internal classifier to
each Transformer encoder layer of the PLM in order to achieve early output when certain conditions are met. Intuitively,
simple input samples are easily classified through shallow layers, while difficult samples need to be passed through
deeper layers for their outputs. Models trained in seven different scenarios are on average 1.06 - 12.22 times faster, and
they preserve at least 97% of the performance of pre-loaded PLMs. In the following sections, I will focus on how to
design and train a "sustainable" model.

2 Related Work

In summary, current research on improving the efficiency of deep neural networks can be divided into two categories:
(1) static methods (2) dynamic methods. Static methods design compact models or compress heavy models. It is
characterized by the fact that models will remain static while making inferences. Many lightweight neural network
architectures are specifically created for resource-constrained NLP applications, such as ALBERT [10], HAT [31],
DeLighT [16], LinFormer [32]etc. For model compression, Weight Quantization [5, 33, 38], Weight Pruning [17, 29, 4],
Module Replacing [34], and KD [7, 22, 26, 27, 14] have proved to be effective to accelerate PLMs.

Another direction to improve the efficiency of neural networks is to implement adaptive inference on various input
instances, also known as dynamic method. Early research focused on token-wise and patch-wise variations. However,
these methods require more effort to train and introduce many additional parameters and inference costs. To mitigate
this problem, methods such as [28, 23] compute the entropy of the predicted probability distribution as a proxy for
the confidence level of the branching classifier to achieve early exit. Although branch classifiers play a key role in
mitigating the behavior of the Softmax layer of the classification model, they are local adjustments which rely on
calibrated probability of each layer for outputting a label. In addition, there is a small loss in accuracy from the given
work.

Figure 1: Inference of a sustainable model in which the number of implementa-
tion layers per sample varies according to its complexity. Taking a batch of inputs
(batch_size = 4) as an example, the first transformer and its student classifier outputs
correct label for sample 3 easily, while other samples require more calculation through
other layers to output. Cases with higher level of uncertainty is sent to the next layer
for further inference, while cases with lower uncertainty are immediately used to
provide the labels.
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3 Methodology

In contrast to above efforts, the "sustainable" approach we consider in Course5’s text classification task leverages global
adjustments for early exit.

3.1 Model Architecture

As shown in Figure 2, our "sustainable" model consists of a backbone and branches. The backbone is built on top of the
general PLMs (Transformers) with an additional classifier block such as BERT + Linear + Softmax, while the branches
include student-classifiers attached to each Transformer output for early exit.

3.1.1 Backbone

The backbone consists of three parts, namely the embedding layer, the encoder containing the stacks of Transformer
blocks, and the classifier block.The embedding layer and the encoder sections are identical to those of a pre-trained
model, such as BERT, RoberTa, etc. Given a sequence s which consists of n tokens e.g., s = [t0, t1, t2, ..., tn], its
hidden representation hi through the layer Li is

hi = Li(hi−1)

h0 = Embedding(s),

where the first hidden representation h0 is the summation of word, position, and segment embeddings, and Li is the i-th
Transformer block.

After going through the last Transformer block, the final hidden representation hL−1 is then used as an in-domain
feature vector for fine-tuning the classification task. Specifically, this process goes through a fully connected layer with
a Softmax function that converts features from higher dimensional spaces into features from lower dimensional spaces
and then into N class probabilities.

p = Classifier(hL−1)

3.1.2 Branches

Branches are essentially a bunch of classifiers appended after each Transformer block, which is used to mimic the work
of the final classifier outputting a distribution or value as a prediction for each layer.

psi = Student_Classifieri(hi).

The student classifiers can be designed in any form to approximate the output distribution, and they do not need to be
identical as each layer learns different types of features from the data. For simplicity, we consider all branch classifiers
to have the same structure of the final classifier, e.g., Linear + Softmax.

3.2 Training

Dynamic methods such as RightTool [23] employ the so-called temperature calibration to output reliable confidence
scores, so such scores can be used to determine whether it is possible to have an early exit. One obvious problem with
such an approach is that those student classifiers are trained independently, thus resulting inconsistent outputs. For
example, if the confidence score for layer two is high, while for layer three is low, the model will provide a label based
on the output of the layer two rather than layer three. To solve the output inconsistency issue, there are two natural
solutions: (1) improving the output of each layer through a priori knowledge (2) ensemble learning. Both methods take
into account the effects of multiple classifiers (including the final classifier), so I address this here as global adjustments,
whereas other dynamic methods mentioned above are local adjustments since they rely only on the capability of the
individual branch classifiers.

It is intuitive to better train the student classifiers under the guidance of the final classifier as known as the teacher
classifier. KL-Divergence is then used to minimize the discrepancy between each student classifier and the teacher
classifier. Mathematically, its formula is given as
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DKL(ps, pt) =

N∑
i=1

ps(i) · log
ps(i)

p(j)
.

In total, there are L − 1 student classifiers, so the sum of their KL-Divergence is used as a total loss l for training,
which is formulated as

L
(
ps0 , . . . , psL−2

, pt
)
=

L−2∑
i=0

DKL (psi , pt)

where psi refers to the probability distribution of the output from the i-th student classifier. One thing to bring up is
that this process only requires the final (teacher) classifier to output its soft-label p, and we are free to use an unlimited
amount of unlabeled data to improve minimization of loss.

The alternative sustainable approach is simple yet efficient, and all it needs is voting (easy ensemble) over student
classifiers. In this end, we only need to train each branch classifier with its cross entropy

Li = −
∑
c∈C

[1[yi = c] · logP (yi = c | hi)],

where c is class label in a set of class labels C. To be noted that neither method requires pre-training, as it is free to load
high-quality pre-trained models.

3.2.1 Fine-tuning

We offer two kinds of fine-tuning methods,

• fine-tuning backbone and student classifiers jointly;
• fine-tuning backbone and student classifiers respectively.

The first type of fine-tuning is identical to any PLM fine-tuning in HuggingFace, which updates all layers and classifiers
together. This could be more suitable for the second model since all classifiers (including the final classifier) are only
concerned with the loss between their output and the true label.

On the other hand, the second kind of fine-tuning can be more beneficial for the first type model that is trained under
the guidance of the final classifier because the model can be improved with unlabeled data. More specifically, the model
is fine-tuned in two stages:

1. Update the weights of embedding layer, all transformer layers, and the last classifier with the loss function e.g.,
cross-entropy, focal loss, dice loss etc. This stage is identical to BERT fine-tuning in the original paper.

2. Freeze all fine-tuned parameters, including the final classifier for the first stage, and then update each student
classifier from top to bottom with its loss e.g., KL-divergence or cross-entropy. The reason for this is to
maintain the best quality of the last classifier, otherwise the Transformer encoders are no longer optimized
only for the last classifier, which would generally worsen its quality.

3.3 Inference

The process of inference in both ways discussed in section 3.2 åre shown in Algorithm 1 and 2.

Algorithm 1: Given an input sequence x, its uncertainty is calculated by dividing the output probability psi of its i-th
student classifier by the normalized entropy, where N is the number of label classes. This is then used to compare with
a pre-defined hyper-parameter S to determine whether a given sequence should be returned at the i-th layer or sent
to the next layer. S ranges between 0 and 1, and it balances the trade-off between the speed and accuracy. S can be
interpreted as the percentage of the sample that will not be sent to a higher layer for outputting a distribution. Both
intuition and experimentation show that the larger the S, the slower but more accurate the model, and the smaller the
choice S, the less accurate but faster the model. At the end, if no conditions are filled, this goes back to final classifier
for prediction.
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Table 1: FLOPs of each operation within the model

Operation Sub-operation FLOPs Total FLOPs
self-attention 603.0M

Transformers (768 -> 768) 1809.8M
FeedForward

(768 -> 3072 -> 768) 1207.9M
Linear

(768 -> 128) 25.1M
Classifier Linear

(128 -> 128) 4.2M 26.3M
Linear

(128 -> N)

To the contrary, Algorithm 2 allows to stop inference early at j-th layer when cntj = t, where cntj is the number of
the times that the prediction remain unchanged, and t is the number of times it needs to be invariant. In this way, it
incorporates the efforts of multiple student classifiers to output the correct label, hence ensemble learning.

Algorithm 1: Inference with entropy
Input: encoded text –> x
Output: probability –> psi or p
for i = 0 to L− 1 do

psi = fi(x; θ)

uncertainty =
∑N

i=1 psi
log psi

log 1
N

if uncertainty < S then
return psi

end
end
return p

Algorithm 2: Inference with count
Input: encoded text –> x
Output: label –> yi or y
for i = 0 to L− 1 do

yi = Softmax(fi(x; θ))
if yi = yi−1 then

cnti = cnti−1 + 1
else

cnti = cnti−1
end
if cnti = t then

return yi
end

end
y = Softmax(p)
return y

4 Experiment Results

4.1 Baseline and dataset

4.1.1 Baseline

In this section, we compare our two sustainable models against four baselines:

• BERT 12-layer BERT-base model was pre-trained on Wiki Corpus and released by Google;

• DistillBERT One of the most famous distillation method of BERT with 6 layers was released by HuggingFace;

• BERT-PKD A patient knownledge distilled method of BERT with 6 layers was released by the Microsoft;

• BERT-of-Thesus A compressing method of BERT with progressive module replacement was release by
Microsoft Asia.

4.1.2 Dataset

To validate the effectiveness of our two sustainable models, we used six open source English datasets and one Course5
dataset. These six datasets i.e., Ag.news, Amz.F, Dbpedia, Yahoo.F, and Yelp, are sentence classification tasks and were
released by [39].
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Table 2: Performance comparison over seven classification datasets

Dataset/
Model

Ag.news

Acc FLOPs
(speedup)

Amz.F

Acc FLOPs
(speedup)

Dbpedia

Acc FLOPs
(speedup)

Yahoo

Acc FLOPs
(speedup)

Yelp.F

Acc FLOPs
(speedup)

Yelp.P

Acc FLOPs
(speedup)

Our data

Acc FLOPs
(speedup)

BERT 94.47 21785M
(1.00x)

65.50 21785M
(1.00x)

99.31 21785M
(1.00x)

77.36 21785M
(1.00x)

65.93 21785M
(1.00x)

96.04 21785M
(1.00x)

96.20 21785M
(1.00x)

DistillBERT 94.18 10872M
(2.00x)

64.05 10872M
(2.00x)

99.10 10872M
(2.00x)

76.73 10872M
(2.00x)

64.25 10872M
(2.00x)

95.31 10872M
(2.00x)

94.41 10872M
(2.00x)

BERT-PKD 94.31 10448M
(2.08x)

64.14 10448M
(2.08x)

99.16 10448M
(2.08x)

76.84 10448M
(2.08x)

64.44 10448M
(2.08x)

95.39 10448M
(2.08x)

94.52 10448M
(2.08x)

BERT-of-Thesus 94.35 10642M
(2.05x)

64.20 10642M
(2.05x)

99.22 10642M
(2.05x)

76.91 10642M
(2.05x)

64.61 10642M
(2.05x)

95.48 10642M
(2.05x)

94.73 10642M
(2.05x)

Our Model (KL)
+ S = 0.1

+ S = 0.5

+ S = 0.8

94.36 5965M
(3.65x)

93.11 2004M
(10.87x)

92.44 1783M
(12.22x)

65.48 20869M
(1.04x)

64.44 9992M
(2.18x)

61.68 2304M
(9.45x)

99.25 2045M
(10.65x)

99.02 1834M
(11.87x)

98.89 1833M
(11.88x)

77.33 15984M
(1.36x)

76.83 4824M
(4.52x)

75.05 1962M
(11.10x)

65.93 20578M
(1.06x)

64.71 9782M
(2.15x)

60.64 1945M
(11.20x)

95.99 6628M
(3.29x)

95.32 3426M
(6.36x)

94.31 2384M
(9.13x)

96.06 10844M
(2.01x)

95.22 5168M
(4.21x)

93.89 1864M
(11.68x)

Our Model (Count)
+ t = 3

+ t = 4

+ t = 6

93.44 8284M
(2.63x)

94.04 10119M
(2.15x)

94.43 13789M
(1.58x)

61.62 11954M
(1.82x)

64.18 15624M
(1.43x)

65.28 17458M
(1.25x)

98.81 6450M
(3.37x)

98.96 8284M
(2.63x)

99.27 11954M
(1.82x)

75.28 8284M
(2.63x)

76.44 10119M
(2.15x)

77.30 13789M
(1.58x)

61.04 11954M
(1.82x)

63.27 15624M
(1.43x)

65.93 17458M
(1.25x)

93.31 6450M
(3.37x)

94.24 8284M
(2.63x)

95.32 10119M
(2.15x)

93.85 11954M
(1.82x)

95.22 15624M
(1.43x)

95.94 17458M
(1.25x)

Our model (KL) is the first model in which the branching classifiers are trained by minimizing KL divergence under the guidance of
the final classifier. The range of S is between 0 and 1. The larger the value of S, the slower the corresponding model inference, but
the more accurate it is. Our model (count) addresses the outputs of the branch classifiers via a voting mechanism to determine the
number of hold-ins, with t being the minimum threshold required for consistency.

4.2 FLOP analysis

Floating point operations (FLOPs) are a measure of a model’s computational complexity and indicate the number
of floating point operations a model performs in a process. In general, the larger the model’s FLOPs, the longer the
inference time. Models with low FLOPs are more efficient and more suitable for industrial use, given the same accuracy.
Here, we use BERT as the backbone for illustration of FLOPs in Table 1. It is not hard to find out that the FLOPs of
the classifier is way much lighter than the transformer layers. Although additional parameters (e.g. branch classifiers)
are added, it achieves acceleration by reducing the large number of computation in Transformers. Note that the added
parameters are less than 0.005% of the parameters in BERT and less than 1% of all FLOPs.

4.3 Training Setting

We add classifier blocks (e.g., Linear + Softmax) as internal classifiers after each transformation layer of the pre-trained
BERT. We perform Bayesian search at learning rates between 2e-4 and 8e-5, and then we apply Adam or AdaX [11]
for optimization. Experimentally, we run 10 epochs, saving one checkpoint every 1500 steps. Finally, we select the
best performing model on the development set. All experiments are performed on a server with two Nvidia GTX 2080
11GB GPUs.

4.4 Overall Comparison

We present our two sustainable models versus other baseline models from the following two perspectives, speed and
accuracy. The results of comparisons are shown in Table 2, where the speedup is obtained by using BERT as the
benchmark. It can be observed that our two sustainable models based on KL-divergence and count outperform all
comparison methods in improving the inference efficiency of PLMs, while retaining more than 98% of the performance
of the original model. Overall, the first mode can speed up 1.06 to 12.22 times faster than BERT, and the second mode
can accelerate 1.25 to 3.37 times faster. The reason why the FLOPs vary from different tasks with both our models
is because of the difficulty of the dataset, which is mentioned in the aforementioned section 1. The easier the input
sample, the earlier the model output its prediction. The results show that all models have relatively low accuracy scores
on the datasets Amz.F and Yelp.F, which means that all models have some uncertainty to output the correct labels. As a
consequence, our two models will be affected, requiring more computational complexity, i.e., more FLOPs. On the
other hand, the open-source datasets with relatively high performance will not demand much FLOPs, so they can have
more efficient inference. Our data is imbalanced in Course5, where the majority class is 6 to 7 times larger than the
minimum two minority classes, and there are some hard examples between classes. To some extent, this can also be
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seen as a sample of inputs with varying degrees of difficulty. Thus, in our data, the two models will also have relatively
high FLOPs. Notably, the performance (accuracy) of the first model is very close to the original BERT. As mentioned
in section 3.2, this model can be further improved with a large amount of unlabeled data.

5 Discussion

In this paper, these two models considered are solutions in Course5’s products, which yield better accuracy-speed
trade-off than existing methods. They are sustainable because

1. it is easy to plug in any PLM, which saves us the time of training the model from scratch.
2. it enhances the efficiency of inference by performing adaptive inference, which requires low computational

complexity.
3. its performance can be further improved by the use of large amounts of unlabeled data;
4. it uses cross-layers features to output a consistent distribution given an input sample.

In addition, both models have a very practical feature in industrial scenarios, i.e., its inference can be tuned by its
hyper-parameter S or t. The two models show promising results on six open source datasets and on Course5’s internal
dataset. The empirical results show that the two models are 1.06-12.22 times and 1.25-3.37 times faster than the baseline
BERT model, respectively. In fact, we also employ other PLMs as backbones in our Course5 products, such as MiniLM,
Electra, and ERNIE-2.0.

6 Future Work

For future work, we would like to explore these methods on other NLP tasks, such as named entity recognition, question
answering, machine translation, etc. Currently, we are using counts to perform consistent output (simple ensembles),
and it would be interesting to design other techniques to benefit more from ensemble learning. In addition, probability
calibration can be considered as one of the extensions to further improve the model.
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